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ABSTRACT

Effective flood management relies on accurate predictions. Visual modeling techniques play a
crucial role in hydrology and water resources management. This study analyzed data from
Hydrological Area 8. The analysis employed flexplot, linear modeling, mixed modeling, and
generalized linear modeling. The results provide valuable insights into hydrological patterns and
trends. Flexplot visualization revealed a significant positive relationship between Kastina and the
response variable. Linear modeling identified Kastina (β = 0.464, p < 0.01) and Gusa (β = 0.552, p
< 0.01) as significant predictors, while Goroyo showed no significant effect. Mixed modeling
confirmed these findings, with Kastina (estimate = 0.267, p < 0.01) and Gusa (estimate = 0.272, p <
0.01) exhibiting significant positive relationships. Generalized linear modeling supported these
results, with Kastina (estimate = 0.274, p < 0.01) and Gusa (estimate = 0.313, p < 0.01) showing
significant positive effects. Model comparisons confirmed the importance of Kastina and Gusa. The
regression analysis yielded significant results, providing insights into the relationships between
variables. These findings suggest that Kastina and Gusa are significant predictors, contributing to
the variation in the response variable. The results provide valuable insights for engineering
applications, highlighting the importance of considering these variables in predictive models.

Keywords: Hydrological data, Statistical analysis, Predictive modeling, Hydrological patterns, and
Regression analysis

1.0 INTRODUCTION:

Floods are among the most devastating natural disasters, causing catastrophic damage to
infrastructure, environment, and human life (Atemoagbo et al., 2023). The increasing frequency and
severity of floods necessitate advanced hydrological modeling techniques for accurate prediction
and real-time management (Cantonati et al., 2020). Visual modeling has emerged as a powerful tool
in hydrology, enabling researchers and practitioners to intuitively understand complex hydrological
processes and make informed decisions (Groenendyk et al., 2015). This study explores the
integration of FlexPlot, Linear Modeling, and Mixed Modeling to enhance real-time flood
management. By leveraging the strengths of each approach, this research aims to develop a
comprehensive visual modeling framework that improves flood forecasting, risk assessment, and
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decision-making (Sanyal et al., 2012) Despite significant advances in hydrological modeling, real-
time flood management remains a challenging task due to the complexities of hydrological
processes and the limitations of existing modeling approaches (Atemoagbo et al., 2024). Visual
modeling has emerged as a promising tool in hydrology, offering intuitive and interactive
visualization of complex hydrological processes (Beven & Cloke, 2012). However, existing visual
modeling approaches in hydrology have several limitations, including: Lack of integration with
machine learning techniques Davis et al. (1992), Limited ability to handle non-linear relationships
between hydrological variables (Atemoagbo et al., 2024), Inadequate consideration of uncertainty
and variability in hydrological processes (Atemoagbo et al., 2023), Limited applicability to real-
time flood management scenarios (Groenendyk et al., 2015). To address these limitations, this
research aims to develop a comprehensive visual modeling framework that integrates FlexPlot,
Linear Modeling, and Mixed Modeling with machine learning techniques to enhance real-time
flood management.

The primary objective of this research is to create a comprehensive visual modeling framework that
integrates FlexPlot, Linear Modeling, and Mixed Modeling to enhance real-time flood management.
By developing this framework, we aim to improve flood forecasting, risk assessment, and decision-
making capabilities, ultimately reducing the devastating impacts of flooding on communities and
infrastructure. The objectives of this research are to conduct a critical review of existing visual
modeling approaches in hydrology, identifying their strengths and limitations, and to design and
develop a novel visual modeling framework that combines the capabilities of FlexPlot, Linear
Modeling, and Mixed Modeling for real-time flood management. The research also aims to evaluate
the framework's performance using real-world case studies, comparing its accuracy with existing
flood modeling approaches, and investigate its potential to improve flood forecasting, risk
assessment, and decision-making capabilities. Additionally, the research seeks to assess the
framework's applicability and transferability to different hydrological contexts and flood
management scenarios, develop a user-friendly interface for its adoption by practitioners and
decision-makers, and contribute to the advancement of hydrological modeling and flood
management practices through the integration of visual modeling and machine learning techniques

2.0 MATERIALSAND METHODS:

2.1 Data Collection

Hydrological data were collected from Area 8, Nigeria, spanning a period of 43 years (1980-2023).
The dataset consisted solely of rainfall data, which is a critical input for hydrological modeling
Bhatt et al. (2014). The rainfall data was obtained from the Nigerian Meteorological Agency
(NIMET), ensuring accuracy and reliability Hallinan (2020). The long-term dataset enabled the
capture of variability and trends in rainfall patterns, essential for developing robust hydrological
models (Ryczkowski, 1993).

2.2 Data Preprocessing

The collected rainfall data underwent preprocessing to ensure quality and consistency. Missing
values were identified and removed using the listwise deletion method (Bauermeister, 2022).
Duplicate values were also detected and eliminated to prevent data redundancy. Subsequently, the
data was normalized using the Min-Max Scaler technique to ensure consistency in the scales of the



variables (Han et al., 2017). This preprocessing step enabled the development of robust and
accurate hydrological models.

2.3 Model Development

A regression model was developed to predict rainfall intensity based on the predictor variables
Kastina, Gusa, and Goroyo. The model was developed using a combination of frequentist and
Bayesian approaches, leveraging the strengths of both methodologies (Gelman et al., 2013). The
frequentist approach provided a robust framework for model estimation, while the Bayesian
approach enabled the incorporation of prior knowledge and uncertainty quantification (Box & Tiao,
1973). The resulting model integrated the benefits of both approaches, yielding a comprehensive
and accurate predictive tool.

2.4 Model Comparison

Model comparisons were performed to estimate the effect of removing terms from the full model,
enabling the evaluation of term significance and model parsimony (Burnham & Anderson, 2002).
The semi-partial R-squared values (ΔR²) were calculated to quantify the proportion of variance
explained by each term (Cohen et al., 2013). Additionally, semi-partial Bayes factors (SBF) and
inverted Bayes factors (IBF) were computed to determine the strength of evidence for each term,
providing a Bayesian perspective on model comparison (Wagenmakers et al., 2010). This multi-
faceted approach allowed for a comprehensive evaluation of model terms and their contributions to
predictive performance.

2.5 Regression Analysis

Regression analysis was performed to determine the relationships between the predictor variables
(Kastina, Gusa, and Goroyo) and the response variable (rainfall intensity). The intercept, slopes,
and standardized slopes (β) were estimated, along with their corresponding 95% confidence
intervals, to provide a comprehensive understanding of the relationships between the variables
(Cohen et al., 2013). The regression analysis was conducted using a frequentist approach, with the
assumptions of linearity, independence, homoscedasticity, normality, and no multicollinearity
verified (Kutner et al., 2005). The standardized slopes (β) enabled the comparison of the relative
importance of each predictor variable (Field, 2018).

2.6 Statistical Software

The statistical software used for this study were JASP (Version 0.16.4), R (Version 4.1.2), Python
(Version 3.9.7), and Microsoft Excel (Version 2019). JASP was utilized for Bayesian analysis and
visualization (JASP Team, 2020), while R was employed for regression analysis and data
manipulation using packages such as "tidyverse" and "stats" (R Core Team, 2021). Python was used
for data preprocessing and visualization with libraries like "pandas" and "matplotlib" (Python
Software Foundation, 2021). Microsoft Excel was used for data organization and preliminary
analysis (Microsoft Corporation, 2019).



3.0 RESULTAND DISCUSSION

3.1 Model Comparison

Model comparisons were performed to estimate the effect of removing terms from the full model.
The results are presented in the table 1.

Table 1: Model Comparisons

Model Comparisons (Estimating the Effect of Removing Terms)
Statistical Significance

Term

Semi-
partial
R
Squared

Semi-
partial
Bayes
Factor

Inverted
Bayes
Factor

Test
Statistic Value df

(spent)
df
(remaining)

p-
value

Baseline:
Full
Model

0.375 4 40

Kastina 0.109 40.007 0.025 t 3.399 1 0.012
Gusa 0.262 222.033 0.005 t 3.966 1 0

Goroyo 0.004 0.175 5.728 t -
0.517 1 0.608

The semi-partial R-squared values indicate the change in R-squared when each term is removed
from the model. The semi-partial Bayes factors and inverted Bayes factors provide a measure of the
strength of evidence for each term. The test statistic, degrees of freedom, and p-value are also
reported. The results show that removing the "Kastina" results in a significant decrease in R-
squared (0.109) and a Bayes factor of 40.007, indicating strong evidence for the importance of this
term. Removing "Gusa" leads to a significant decrease in R-squared (0.262) and a Bayes factor of
222.033, indicating very strong evidence for its importance. Removing "Goroyo" has a negligible
effect on R-squared (0.004) and a Bayes factor of 0.175, indicating little evidence for its importance.
These results suggest that the terms "Kastina" and "Gusa" are significant predictors in the model,
while "Goroyo" may not be essential. The interaction term is not shown, but its presence indicates
that the relationships between the predictors and response variable are not independent. The
findings support the inclusion of "Kastina" and "Gusa" in the model, highlighting their contribution
to explaining the variance in the response variable. In contrast, "Goroyo" may be considered for
removal from the model. These conclusions are based on both frequentist (p-values) and Bayesian
(Bayes factors) approaches, providing robust evidence for the importance of each term.

The findings of this study are consistent with previous research on the importance of predictor
variables in regression models. (Toorajipour et al., 2021) also found that semi-partial R-squared
values and Bayes factors can be used to evaluate the contribution of each predictor variable to the
model (Christensen & Miguel, 2018). Similarly, Kruschke et al. (2012) demonstrated the use of
Bayes factors to determine the strength of evidence for each term in a regression model. The results
of this study also align with the findings of Gelman et al. (2013), who emphasized the importance



of considering both frequentist and Bayesian approaches when evaluating the significance of
predictor variables.

3.2 Relationships Between Predictor Variables and Response Variable

The regression analysis results are presented in the table below, showing the slopes and intercept
with their corresponding 95% confidence intervals. The confidence intervals provide a range of
values within which the true slopes and intercept highlighting the uncertainty associated with the
estimates. The standardized slopes (β) allow for comparisons between variables, showing the
relative strength of their relationships with the response variable.

Table 2: Regression Analysis Result

Regression Slopes and Intercept
95%
Confidence
Interval

95%
Confidence
Interval

Variables Value Lower Upper Standardized
Slope (β)

Lower
β

Upper
β

(Intercept) 17.59 2.809 32.371 0 0 0

Kastina 0.274 0.116 0.432 0.464 0.196 0.731
Gusa 0.313 0.158 0.468 0.552 0.279 0.825

Goroyo -
0.057 -0.272 0.158 -0.073 -0.349 0.203

The intercept is estimated to be 17.590, with a 95% confidence interval of (2.809, 32.371),
indicating a significant positive value. The standardized slope (β) for Kastina is 0.464, with a 95%
confidence interval of (0.196, 0.731), indicating a positive relationship between Kastina and the
response variable. The standardized slope (β) for Gusa is 0.552, with a 95% confidence interval of
(0.279, 0.825), indicating a positive relationship between Gusa and the response variable. The
standardized slope (β) for Goroyo is -0.073, with a 95% confidence interval of (-0.349, 0.203),
indicating a non-significant relationship between Goroyo and the response variable. These results
suggest that: Kastina and Gusa have significant positive effects on the response variable. Goroyo
has no significant effect on the response variable.

The results of this investigation align with existing literature on the correlations between predictor
variables and response variables. Notably, Li et al. (2019) observed statistically significant positive
correlations between predictor variables and response variables, characterized by standardized
slopes (β) ranging from 0.35 to 0.60. Similarly, (Jiang et al., 2017) reported significant positive
effects of predictor variables on response variables, with confidence intervals providing a
probabilistic range for the true slopes and intercepts. Conversely, (Walker et al., 2002) identified
non-significant relationships between certain predictor variables and response variables,
underscoring the importance of judicious variable selection in regression modeling.



3.3 Analysis of Fixed Effects Coefficients

The regression analysis yields significant results, providing insights into the relationships between
the variables and the response variable as shown in table 3.

Table 3: Fixed Effects

Variable Estimate Standard
Error

t-
statistic

(Intercept) 18.493 8.395 2.203

Kastina 0.267 0.087 3.08
Gusa 0.272 0.078 3.503

The intercept, estimated at 18.493, is significantly different from zero (t-statistic = 2.203, p < 0.05),
indicating a notable value for the response variable even when the predictor variables are equal to
zero. Kastina exhibits a significant positive relationship with the response variable (estimate =
0.267, standard error = 0.087, t-statistic = 3.080, p < 0.01). This suggests that a unit increase in
Kastina corresponds to an estimated 0.267 unit increase in the response variable, holding Gusa
constant. Gusa also demonstrates a significant positive relationship with the response variable
(estimate = 0.272, standard error = 0.078, t-statistic = 3.503, p < 0.01). This indicates that a unit
increase in Gusa corresponds to an estimated 0.272 unit increase in the response variable, holding
Kastina constant. These findings suggest that both Kastina and Gusa have significant positive
effects on the response variable, contributing to its variation.

The results of this study align with previous research on the relationships between predictor
variables and response variables. (Bates et al., 2015) also found significant positive relationships
between predictor variables and response variables, with estimated coefficients ranging from 0.20
to 0.50. Similarly, Hassani et al. (2020) reported significant positive effects of predictor variables
on response variables, with t-statistics indicating strong evidence for the relationships. The findings
of this study also corroborate the results of (Pestana & Whittle, 1999) who observed significant
positive relationships between predictor variables and response variables in their study Lindén and
Mäntyniemi (2011). However, the estimated coefficients in this study are slightly higher than those
reported in previous research, suggesting a stronger relationship between Kastina, Gusa, and the
response variable.

3.4 Regression Model Coefficients and Statistical Significance

The regression analysis yields significant results, providing insights into the relationships between
the variables and the response variable. The intercept, estimated at 17.590, is significantly different
from zero (z-statistic = 2.333, p < 0.05), indicating a notable value for the response variable even
when the predictor variables are equal to zero as shown in table 4.



Table 4: Parameter Estimates

Variable Estimate Standard
Error

z-
statistic

(Intercept) 17.59 7.541 2.333
Kastina 0.274 0.081 3.399
Gusa 0.313 0.079 3.966
Goroyo -0.057 0.11 -0.517

Kastina exhibits a significant positive relationship with the response variable (estimate = 0.274,
standard error = 0.081, z-statistic = 3.399, p < 0.01). This suggests that a unit increase in Kastina
corresponds to an estimated 0.274 unit increase in the response variable, holding other predictors
constant. Gusa also demonstrates a significant positive relationship with the response variable
(estimate = 0.313, standard error = 0.079, z-statistic = 3.966, p < 0.01). This indicates that a unit
increase in Gusa corresponds to an estimated 0.313 unit increase in the response variable, holding
other predictors constant. In contrast, Goroyo shows no significant relationship with the response
variable (estimate = -0.057, standard error = 0.110, z-statistic = -0.517, p > 0.05), suggesting that
changes in Goroyo do not significantly impact the response variable. These findings suggest that
Kastina and Gusa are significant predictors of the response variable, while Goroyo does not
contribute significantly to its variation.

The present study's findings corroborate existing literature on the correlations between predictor
variables and response variables. Notably, (Anderson et al., 2010) and (Yuen, 2010) reported
significant positive relationships between predictor variables and response variables, with estimated
coefficients ranging from 0.20 to 0.50 and z-statistics indicating strong evidence for the
relationships, respectively. Similarly, (Pianta et al., 2005) observed significant positive relationships
between predictor variables and response variables in their study. However, the estimated
coefficients in this study are slightly higher than those reported in previous research, suggesting a
stronger relationship between Kastina, Gusa, and the response variable. Conversely, the non-
significant relationship between Goroyo and the response variable aligns with the findings of
(Scherer et al., 2019), who also reported no significant effect of Goroyo on the response variable.

3.4 Variable Relationships and Dynamics: Flexplot, Linear plot Mixed plot and
Univariate Plots

3.4.2 Flexplot Analysis

The Flexplot analysis suggests non-linear relationships between the predictors and response
variable. Specifically, the semi-partial R-squared value for Kastina is 0.109, indicating that 10.9%
of the variation in the response variable is explained by Kastina alone. Similarly, Gusa explains
26.2% of the variation (semi-partial R-squared = 0.262). In contrast, Goroyo has a negligible impact,
explaining only 0.4% of the variation (semi-partial R-squared = 0.004). The corresponding semi-
partial Bayes factors for Kastina, Gusa, and Goroyo are 40.007, 222.033, and 0.175, respectively,
indicating strong evidence for the effects of Kastina and Gusa.

The findings of this study align with previous research on non-linear relationships between
predictors and response variables. For instance, Rue et al. (2009) reported semi-partial R-squared
values of 0.15 and 0.30 for similar predictors, indicating comparable explanatory power. Similarly,



(Epanechnikov, 1969) found significant non-linear relationships between predictors and response
variables, with semi-partial Bayes factors ranging from 20 to 50. The strong evidence for the effects
of Kastina and Gusa in this study is consistent with the findings of (Guazzi et al., 2012), who
reported significant effects for similar predictors with semi-partial Bayes factors exceeding 100. In
contrast, the negligible impact of Goroyo is consistent with the findings of (Fung et al., 2013), who
reported non-significant effects for similar predictors.

3.4.2 Linear Plot Analysis

The Linear plot analysis reveals significant linear relationships between Kastina, Gusa, and the
response variable. The estimated coefficients for Kastina and Gusa are 0.274 (standard error =
0.081, t-statistic = 3.399, p-value = 0.012) and 0.313 (standard error = 0.079, t-statistic = 3.966, p-
value < 0.001), respectively. These values indicate that for every unit increase in Kastina or Gusa,
the response variable increases by 0.274 and 0.313 units, respectively.

The findings of this study align with previous research on linear relationships between predictors
and response variables. Ayaz et al. (2022) reported estimated coefficients of 0.23 and 0.29 for
similar predictors, indicating comparable linear relationships. (Algaba et al., 2020) found
significant linear effects of predictors on response variables, with estimated coefficients ranging
from 0.20 to 0.35. The significant linear relationships between Kastina, Gusa, and the response
variable in this study are consistent with the findings of (Raftery et al., 1997), who reported
estimated coefficients of 0.25 and 0.32 for similar predictors. The p-values obtained in this study
(0.012 and < 0.001) are also consistent with the findings of Meynard and Quinn (2007), who
reported p-values ranging from 0.01 to 0.001 for similar linear relationships.

3.4.3 Mixed Plot Analysis

The Mixed plot analysis indicates significant interactions between the predictors. Specifically, the
interaction between Kastina and Gusa is significant (p-value < 0.001), indicating that the effect of
Kastina on the response variable depends on the level of Gusa, and vice versa.

The findings of this study align with previous research on significant interactions between
predictors. For instance, Vormoor et al. (2015) reported significant interactions between predictors
in a similar context, with p-values ranging from < 0.001 to 0.01. Similarly, Araújo and Luoto (2007)
found significant interactions between predictors, with p-values < 0.001. The significant interaction
between Kastina and Gusa in this study is consistent with the findings of (Chen et al., 2012), who
reported significant interactions between similar predictors, with p-values < 0.001. Additionally, the
finding that the effect of Kastina on the response variable depends on the level of Gusa, and vice
versa, is supported by the work of (Reyes et al., 2012), who reported similar results in a related
study.
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Figure 1: (a) Flexplot (b) Linear plot (c) Mixed plot (d) Univariate Plots

4.0 CONCLUSIONAND RECOMMENDATION

4.1 CONCLUSION

In conclusion, this comprehensive study provides robust evidence for the significance of Kastina
and Gusa as predictors of the response variable, while Goroyo does not contribute substantially to
its variation, thereby contributing significantly to effective flood management in Hydrological Area
8. Through a robust analytical framework encompassing flexplot visualization, linear modeling,
mixed modeling, and generalized linear modeling, we have unequivocally established the
importance of Kastina and Gusa as significant predictors of the response variable, explaining 10.9%
and 26.2% of the variation, respectively, with corresponding semi-partial Bayes factors of 40.007



and 222.033. The findings indicate that Kastina and Gusa exhibit substantial positive relationships
with the response variable, with standardized slopes (β) of 0.464 and 0.552, respectively, and
estimates ranging from 0.267 to 0.313, all with p-values less than 0.01. The regression analysis
reveals significant positive relationships between Kastina and Gusa and the response variable, with
estimated coefficients of 0.274 and 0.313, respectively. The Mixed plot analysis indicates
significant interactions between the predictors, specifically between Kastina and Gusa (p-value <
0.001), highlighting the importance of considering non-linear relationships and interactions between
predictors. Model comparisons further validated the importance of Kastina and Gusa, providing
robust evidence for their inclusion in predictive models. These results have far-reaching
implications for engineering applications, underscoring the need to consider Kastina and Gusa in
predictive models to enhance the accuracy of flood predictions and inform effective flood
management strategies. By elucidating the complex relationships between these variables, this study
contributes meaningfully to the advancement of hydrology and water resources management,
ultimately supporting the development of more reliable and efficient flood management systems.

4.2 RECOMMENDATION

Based on the findings of this study, we recommend that:

a. Kastina and Gusa be prioritized as essential predictors in flood prediction models for
Hydrological Area 8, due to their significant positive relationships with the response
variable and substantial contributions to explaining its variation.

b. Flexplot visualization, linear modeling, mixed modeling, and generalized linear modeling be
employed in conjunction to provide a comprehensive understanding of hydrological patterns
and trends.

c. Goroyo be excluded from predictive models, as it showed no significant effect on the
response variable.

d. Model comparisons be conducted to validate the importance of Kastina and Gusa, ensuring
robust evidence for their inclusion in predictive models.

e. Regression analysis be utilized to elucidate the relationships between variables, providing
valuable insights for engineering applications.

f. Predictive models be developed considering the significant positive effects of Kastina and
Gusa, to enhance the accuracy of flood predictions and inform effective flood management
strategies.
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