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ABSTRACT

This study is designed to develop a hybrid time series model. A statistical model is said to be
hybrid if it combines two or more existing models for a better and efficient performance. Our
new hybrid model will be used to model time series data such as those generated by climate
change and environmental agents. Data generated by climate change and environmental agents
are usually not normally distributed hence they are characterised as heavy. Literature showed
that quite a number of researchers have studied ARIMAX associated with exogenous covariate
(s), using different short-memory frequency data, with little or no strength to capture long-
memory (high frequency) observations with heavy tailed traits. Having in mind that conventional
ARIMAX model has been rarely applied to any of the climate change and environmental agents
which are the most cognate agent with associated exogenous variables and are usually
characterized by kurtosis, skewness, outliers, long memory (high frequency) and large
fluctuation series; this study, therefore, proposes a more robust and sufficient model that would
be needed for modeling time series observational data with heavy tailed traits.
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1.0 INTRODUCTION

Statistical methods and models are either linear or non-linear based on some assumptions
theoretically and analytically. These assumptions led to the splitting of approach of dealing with
time varying observations (time series) models into two approaches; Time domain (otherwise
known as probabilistic approach) and frequency domain (spectral function) analyzes. The time
domain approach relies solely on either dependence (correlated and ordered) or independency
that are continuous or discrete time variant uniformly interval series or observations (daily,
hourly, weekly, monthly, quarterly, yearly or bi-annually series) (Akouemo and Povinelli; 2014).

ARIMAX model comes in when time series are affected by special events such as
environmental regulations, legislative activities, policy changes, and similar events, which might
be referred to as augment, supportive or intervention events. One or more endogenous variables
(Xs) can be incorporated in the time series model to be able to predict the value of another series
by using a transfer function. The Transfer functions can be used both to model and forecast the
response series, and to analyze the impact of the intervention. The general transfer function can
be employed by the ARIMA procedure discussed by (Box and Tiao, 1975). When an ARIMA
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model includes other time series as input variables, the model is sometimes referred to as an
ARIMAX model, otherwise known to be ARIMAX model as dynamic regression.

The general overview of this research is an extension and modifications of ARMA model. The
lognormal distribution will be introduced as the error term (white noise) to the ready established
ARIMAX model (that is, regression like time series model) with additional inputs. The initiation
was sourced for from literature and findings that ARIMAX with standardized white noise from
Gaussian supported by short memory-time varying series.

2.0 REVIEW OF RELATED LITERATURE
Laili et al (2019) made an estimate of the total departure of ship passengers in the main port of
Makassar using the ARIMAX method with the effects of calendar variations. They opined that
the ARIMAX method is a method that can be used when there are exogenous variables, where in
this case the exogenous variable is in the form of variable dummy which is Eid holidays. Their
forecasting results show that the ARIMAX method has a relatively small accuracy with the
MAPE value.

Ling et al (2019) developed an Autoregressive Integrated Moving Average with external
variables (ARIMAX) model which tries to account the effects due to the climatic influencing
factors, to forecast the weekly cocoa black pod disease incidence. With respect to performance
measures, it is found that the proposed ARIMAX model improves the traditional Autoregressive
Integrated Moving Average (ARIMA) model. The results of this forecasting can provide benefits
especially for the development of decision support system in determine the right timing of action
to be taken in controlling the cocoa black pod disease.

Farhana and Monzur (2020) studied the development of Auto–Regressive Integrated Moving
Average models with exogenous input (ARIMAX) to forecast autumn rainfall in the South West
Division (SWD) of Western Australia (WA). The developed ARIMAX model can help to
overcome the difficulty in seasonal rainfall prediction as well as its application can make an
invaluable contribution to stakeholders’ economic preparedness plans.

Nimish et al (2021) in their paper compared both methods’ preprocessing performance when
applied to seasonal time series data with varying time resolutions and complex trend patterns for
different content of outliers through detailed result analyses. Further, a new metric to measure
outlier correction capability is suggested.

Abdallah (2021) used Gross Domestic Product (GDP) and consumer price index (CPI) as
significant indicators to describe and evaluate economic activity and levels of development. His
paper aimed at modeling and predicting GDP and CPI in Jordan. In order to achieve this goal,
their study applied the Box- Jenkins (JB) methodology for the period 1976-2019.

Ugoh (2021) proposed an appropriate ARIMAX model that is used to forecast the Nigeria’s
GDP. The data used for the study is sourced from the World Bank for a period of 1990-2019.
The ARIMA model is fitted on the residuals using Box-Jenkins approach. The Bayesian
Information Criterion (BIC) is adopted to assess the adequacy of the models. The raw data
satisfy the assumption of multicollinearity when export is eliminated and the residual series is
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stationary after the first differencing. This study shows that import is a significant exogenous
variable for the GDP dynamics.

Zhou et al. (2021) design an efficient transformer-based model for LSTF, named Informer, with
three distinctive characteristics: (i) a ProbSparse Self-attention mechanism, which achieves (Llog
L) in time complexity and memory usage, and has comparable performance on sequences’
dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving
cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative
style decoder, while conceptually simple, predicts the long time-series sequences at one forward
operation rather than a step-by-step way, which drastically improves the inference speed of long-
sequence predictions. Extensive experiments on four large-scale datasets demonstrate that
Informer significantly outperforms existing methods and provides a new solution to the LSTF
problem.

3.0 MATERIALS AND METHODS

According to Chen (2019) and Jonathan and Kung-Sik (2008), Autoregressive (AR) model is a
time –varying model that changes variable that regresses on it order or lagged. That is,

yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + ⋯⋯ + ϕpyt−p + εt (3.1)

= ϕ0 + i=1
p ϕiyt−i� + εt (3.2)

Moving Average (MA) is a time series model that merges the dependency component between
time observational series and its white noise (residual noise) via time lagged (Patel et al, 2017).
That is,

εt = θ0 + θ1εt−1 + θ2εt−2 + ⋯⋯ + θqεt−q (3.3)

= θ0 + i=1
q θiεt−i� (3.4)

Autoregressive Moving Average (ARMA) model is considered the mixture of AR and MA .That
is,

Yt = φ0 + φ1yt−1 + φ2yt−2 + ⋯ + φpyt−p + εt − θ1εt−1 − θ2εt−2 − ⋯ − θqεt−q

(3.5)

White noise εt ∼ (0, σ2)

E(εt) = 0

E(εtεT) = σ2 for t = T
0 otherwise

Otherwise,

φp(B)Yt = μ + θq(B)εt (3.6)

Or

φp(B)∇dYt = φ0 + θq(B)εt (3.7)
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For Autoregressive Moving Average (ARMA) and Autoregressive Integrated Moving Average
(ARIMA) respectively

where;

εt is the white noise at time t ∍ εt ∼ N 0, σ2

B is the background shift operator defined as BpYt = Yt−p

∇d = 1 − B d is the differencing operator of order “d”

φ(B) = 1 − φ1B − φ2B2 − . . . − φpBp is Autoregressive polynomial of order “p”.

θ(B) = 1 − θ1B − θ2B2 − . . . − θqBq is Moving Average polynomial of order “q”.

μ is the constant parameter.

It is necessary for estimation to assume that all the roots of φ(B) and θ(B) lie outside the unit
circle. Equations (3.8) and (3.9) can be simplify as

ARMA, for Yt = φ0 + θq(B)εt

φp(B)
(3.8)

ARIMA, for ∇dYt = φ0 + θq(B)εt

φp(B)
(3.9)

For the Differencing,

∇1Yt = 1 − B 1Yt∇1Yt = 1 − B 1Yt = Yt − Yt−1

∇2Yt = 1 − B 2Yt

= 1 − 2B + B2 Yt (3.10)

= ∇1Yt − ∇1Yt−1 = Yt − Yt−1 − Yt−1 − Yt−2

∇3Yt = 1 − B 3Yt = Yt − 3Yt−2 + Yt−3 (3.11)

According to Yang and Wang (2017), Autoregressive Integrated Moving Average with
Covariates “X” (ARIMAX) model which is an improved version of the ARMA makes up the
room for incorporating exogenous variables or covariates in order to improve comprehensiveness,
supportive items (dependents) and forecasting.

The abstraction of reality of the ARIMAX can be defined as:

Yt = φ0 + φ1yt−1 + φ2yt−2 + ⋯⋯ + φpyt−p + β0xt + β1xt−1 + β2xt−2 + ⋯ + βpxt−p + εt −
θ1εt−1 − θ2εt−2 − ⋯ − θqεt−q (3.12)
Where xt⋯⋯xt−p are the p-lagged period of the exogenous covariates xt−p with errors that are
independently and identically distributed with mean zero, variance (σ2) and covariance of zero.

Otherwise,
φp(B)Yt = φ0 + φ(B)xt + θq(B)εt (3.13)

φp(B)∇dYt = φ0 + φ(B)xt + θq(B)εt (3.14)
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For ARMAX and ARIMAX respectively, such that

Yt ⇒ The output observational series (in regression, term as dependent variable)

xt ⇒ The input observational series (in regression, term as independent variable/covariates)

εt ⇒ The series noise or stochastic disturbance, it is to be noted that it is independent of the input
series

φ(B)xt ⇒ is known as the transfer function (otherwise called link function or impulse response
function) that link xt to yt through distributed lag.

φ(B)xt = φ0 + φ1B + φ2B2 + ⋯⋯ Xt (3.15)

φ1, φ2, . . . in eq. (3.15) are regarded as the infinite coefficients of the regression impulse weights
of the responses that could be a non-negative or negative. Suppose the number of the impulse
weights is equal to “b” (known as dead time) and rewriting the link function as ratio of
distributed lag polynomial time of a finite lag to a low ordered polynomial lag in B.

φ(B)xt = ηh(B)Bb

λr(B)
Xt (3.16)

So, Yt = j=1
n ηh(B)Bb

λr(B)
Xt + θq(B)εt

φp(B)
� (ARMAX) (3.17)

where;

j=1
n ηh(B)Bb

λr(B)
Xt = i=0

∞ φ(B)xt� Bb =� i=0
∞ φiBi Bb� (3.18)

= φ0Bb + φ1Bb+1 + φ2Bb+2 + φ3Bb+3 + ⋯⋯ (3.19)

Equation (3.17) could be written in terms of Integrated, that is, in terms of ARIMAX as;

Yt = j=1
n ηh(B)Bb

λr(B)
Xt + θq(B)εt

∇dφp(B)
� (ARIMAX) (3.20)

For long-memory (highly frequency) observational series, ARMAX or ARIMAX, the
distributional form of (εt)is then given as

f(yt) = 1
ytσ 2π

exp − ln ( yt) 2

2σ2 yt > 0 (3.21)

or

f(εt) = 1
εtσ 2π

exp − ln ( εt) 2

2σ2 εt > 0 (3.22)

Because, the error term and the observational series share the same distributional form

With yt ∼ εt ∼ N exp σ2

2
, exp ( 2σ2) − exp ( σ2) (3.23)

Yt = j=1
n ηh(B)Bb

λr(B)
Xt + θq(B)εt

φp(B)
� ∼ N exp σ2

2
, exp ( 2σ2) − exp ( σ2) (3.24)

For log-ARMAX
and,
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Yt = j=1
n ηh(B)Bb

λr(B)
Xt + θq(B)εt

∇dφp(B)
� ∼ N exp σ2

2
, exp ( 2σ2) − exp ( σ2) (3.25)

For log-ARIMAX

Table 3.1: Data of Oil Spills from Four Companies
Years BG (Metric tons) BP(Metric tons) CNE(Metric tons) TLW(Metric tons)

2005 361.75 429.91 168.44 156.75
2006 408.25 469.21 189.96 178
2007 411.25 457.94 176.17 173.75
2008 405.25 445.83 175.56 160.25
2009 416.75 467.3 184.05 167
2010 459 492.74 204.19 186.5
2011 471.25 533.87 227.22 191.25
2012 499.5 535.99 268.27 215.5
2013 538 571.19 297.05 260
2014 496 529.21 261.6 242.5
2015 540.5 537.69 277.21 264
2016 574.5 524.97 290.84 270
2017 635 576.26 291.9 313.5
2018 667.5 541.96 292.36 298.5
2019 719.5 568.63 321.89 339
2020 737 581.96 352.34 411.5
Source: NBS Yearly Bulletin, 2020

4.0 RESULTS AND DISCUSSION

The graph below shows the time plots of the observed data in two different time horizons.

Fig 4.1: A time plot of the observed data for BG (2005-2020)
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Fig. 4.2: A Time Plot of the Observed Data for BG (2007-2020)

Table 4.1: Correlation Matrix –First Time Horizon (2005 - 2020)

BG

BP

CNE

TLW

BG

1.0000

-0.2490

0.5511

0.0114

BP

-0.2490

1.0000

0.0043

0.2619

CNE

0.4511

0.0043

1.0000

0.1301

TLW

0.2114

-0.2619

0.6301

1.0000

Table 4.2: Correlation Matrix –Second Time Horizon (2007 - 2020)

BG
BP
CNE
TLW

BG
1.0000
-0.0678
0.6543
0.2106

BP
-0.0678
1.0000
-0.0789
-0.0601

CNE
0.6543
-0.0789
1.0000
0.755

TLW
0.4106
-0.0601
0.755
1.0000

Table 4.3: Results for ARIMAX and LOG-ARIMAX Models Selection (BG)
Ticker Model Type Selected Model AIC

DBG ARIMAX (0,1,2) 781.65

DBG LOG-ARIMAX (0,1,2) 765.72

DBG* ARIMAX (0,1,2) 533.38

DBG* LOG-ARIMAX (0,1,2) 525.53
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Table 4.4: Estimation of Model Parameters(BG)
ESTIMATES ARIMAX LOG-ARIMAX ARIMAX* LOG-ARIMAX*

b - 0.6785 - 0.6366

AR (1) - - - -

AR (2) - - - -

AR (3) - - - -

MA (1) -0.0199 -0.0297 -0.022 -0.033

MA (2) 0.2916 0.3322 0.3103 0.3367

MA (3) - - - -

The parameter estimates in both time regimes is presented in Table 4.4.

Table 4.5: Error Metrics (Forecast Accuracy Measures)(BG)
Test Type

Ticker MAE RMSE MSE

ARIMAX 44.7725 56.5525 3198.1830

LOG-ARIMAX 36.80373 49.8227 2482.3040

ARIMAX* 53.4383 65.2898 4262.7570

LOG-ARIMAX* 42.6022 54.0129 2917.3950

Table 4.6: Diebold-Mariano Test for Comparing Models (BG)
Ticker Test Type p – value
ARIMAX DM < 0.0018

LOG-ARIMAX DM < 0.0001

ARIMAX * DM < 0.0049

LOG-ARIMAX * DM < 0.0001

Table 4.7: Results Summary (BG)
Model ARIMAX LOG-ARIMAX ARIMAX * LOG-ARIMAX *

*
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L.COR 0.911 - 0.249 + 0.811 - 0.068
AIC 781.65 765.72 533.38 525.53
MAE 44.77 49.82 53.44 42.60
RMSE 56.55 49.82 65.29 54.01

MSE 3198.18 2482.30 4262.757 2917.39

4.2 Discussion of Results

From the analysis above, Fig 4.1-Fig 4.8 are the time plots of the observed data for the two different
time horizons which show an upward pattern of growth in the oil spill data from BG, BP, CNE and
TLW. Besides, the graphs depict heavy fluctuations and outliers in the observed oil spill data in the two
time horizons.

Also, from the analysis above, Tables 4.1 and 4.2 show the linear correlation between the considered oil
spills of the four oil companiesin the two time zones of 2005-2020 and 2007-2020 respectively. The
results show that the volumes of oil spills from the four oil companies are not significantly correlated.
None of the random walk test of all the considered oil spills in the Oil and Gas Industry was significant
both with homoskedastic and heteroskedastic errors.

Table 4.3 shows that the Log-ARIMAX model has the least AIC in the two time horizon as compared to
the classical ARIMAX model. This implies that the LOG-ARIMAX model has a better forecasting
strength and accuracy as compare to that of ARIMAX model. Tables4.4 and 4.5 show estimation of
model parameters and error metrics (forecast accuracy measures) respectively. The values of the error
metrics, in terms of MAE, RMSE, and MSE, show that the LOG-ARIMAX model gives better
forecasting accuracy than the traditional ARIMAX model.

5.0 SUMMARY AND CONCLUSION

5.1 Summary

With reference to the first objective of this thesis, it is empirically evident that ARIMAX model with an
exogenous variable (LOG-ARIMAX) performed creditably well in all cases and scenarios as outlined in
chapter four. This emphasizes that, when improving the in – sample forecasting accuracy of oil spills
using the Box – Jenkins model, it is in order to incorporate an exogenous variable to further augment the
accuracy of the in – sample forecast. In this thesis, historical adjusted oil spills recorded by four Oil and
Gas companies in Nigeria were use as possible exogenous variable or as public information.

On the other hand, linear correlation between the ARIMAX model with exogenous variable did very
little to improve the in-sample forecasting accuracy of all the considered scenarios in this thesis. In most
cases, the high and low linear correlation between oil spills of candidate models only gave signal to the
corresponding Akaike Information Criterion (AIC) value. High correlation in most cases gave a lower
value of the AIC and vice-versa. However, this assertion was not consistent. Evidently, the Diebold and
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Mariano test of accuracy is dependent AIC of the candidate models. However, in most cases smaller
AIC values turn to minimize the considered error metrics (i.e., MAE, RMSE and MSE) and vice versa.
This is evident throughout the results. The linear correlation on the hand had little or no impact on the
performing models.

The Box-Jenkins Method with/without an exogenous variable supports the semi – strong form of EMH.
Thus, the information, Ωt set comprising of the past and current oil spills and all publicly available
information supports the Efficient Market Hypothesis (EMH) in its semi-strong form. Timmermann and
Granger, (2004) in their paper “Efficient market hypothesis and forecasting” argued that traditional time
series forecasting methods relying on individual forecasting models or stable combinations of these are
not likely to be useful. This in one way or the other confirms our findings that even though log-
ARIMAX model is an improvement of an ARIMAX model in most cases.

5.2 Conclusion

This study proposes a hybrid ARIMAX model to capture and accommodate both the external covariate(s)
and the heavy-tailed properties of observational time series events using secondary datasets of the long
memory types of oil spillage. The results of the analysis show that the hybridization of Logarithm and
ARIMAX (LOG-ARIMAX) as propounded in this work is more robust, efficient, sufficient and reliable
in forecasting long-memory data characterized by heavy tailed traits.
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